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[bookmark: _Toc318206699]Chapter 1 – Key CI/CD/Jenkins Concepts

[bookmark: _Toc318206700]Continuous Delivery/Continuous Integration Concepts 
[bookmark: _Toc318206701]Define continuous integration, continuous delivery, continuous deployment 
· Continuous integration – everyone commits to the mainline at least daily and automated build to verify
· Continuous delivery – can release to prod at any time via a push button deployment
· Continuous deployment – actually deploying to production continually
· DevOps is cultural and is broader than continuous delivery
· Pipeline has visibility, feedback and continuous delivery
· CI practices
· Single source repository
· Automate the build
· Make your build self testing
· Everyone commits everyday
· Every commit triggers a build
· Fix broken builds immediately
· Keep the commit build fast (and use pipeline for slower builds)
· Test in a clone of the prod environment
· Make it easy to get the latest build
· Visibility
· Automate deployment
· CD principles
· Check in
· Build and unit tests
· Automated acceptance tests
· User acceptance test
· Release
[bookmark: _Toc318206702]Difference between CI and CD 
· CI doesn’t require deploying
[bookmark: _Toc318206703]Stages of CI and CD 
· Start with the commit stage which compiles and runs unit tests.
· Then run longer tests/quality tools/ Ex: acceptance tests (given/when/then)
· Finally, deploy
[bookmark: _Toc318206704]Continuous delivery versus continuous deployment 
· Delivery means the ability to deploy to production. Deployment means actually doing so
[bookmark: _Toc318206705]Jobs 
[bookmark: _Toc318206706]What are jobs in Jenkins? 
· Job/Project – Runnable tasks
[bookmark: _Toc318206707]Types of jobs 
· Freestyle project
· Maven project
· Pipeline
· Multi configuration
· Multi branch
· Long running
[bookmark: _Toc318206708]Scope of jobs 

· Not sure what this means – Maybe that there is a long running job type?
[bookmark: _Toc318206709]Builds 

[bookmark: _Toc318206710]What are builds in Jenkins? 
· Build – Result of one run of a job/project
[bookmark: _Toc318206711]What are build steps, triggers, artifacts, and repositories? 
· Build step – a single operation withing a build
· Triggers – something that starts a build (time, SCM polling, etc)
· Artifact – output of a build
· Repository – the SCM system where the code to be built lives
[bookmark: _Toc318206712]Build tools configuration 
· In Manage System, set up location of tools like the JDK, Ant and Maven
[bookmark: _Toc318206713]Source Code Management 
[bookmark: _Toc318206714]What are source code management systems and how are they used? 
· Use to track code
· Client/server – one source of truth such as SVN.
· Distributed version control – every developer has copy of repository, peer to peer,  such as Git.
[bookmark: _Toc318206715]Cloud-based SCMs 

· Ex: Git hub
[bookmark: _Toc318206716]Jenkins changelogs 

· List commits since last build
[bookmark: _Toc318206717]Incremental updates v clean check out 
· Incremental updates – faster
· Clean check out – guarantees no extra or changed local files
[bookmark: _Toc318206718]Checking in code 
· Should be at least daily with CI
[bookmark: _Toc318206719]Infrastructure-as-Code 
· Storing everything needed to build your environment
[bookmark: _Toc318206720]Branch and Merge Strategies 
· Branch by release
· Branch by feature – by user story
· Branch by abstraction – one branch, but turn features on/off by release
· Merge regularly
· 
[bookmark: _Toc318206721]Testing 
[bookmark: _Toc318206722]Benefits of testing with Jenkins 
· Fast feedback!
[bookmark: _Toc318206723]Define unit test, smoke test, acceptance test, automated verification/functional tests 
· Unit test – test one class, often involves test doubles
· Integration/functional test – test components together
· Smoke test – sanity check to reject a release. Looking for major errors.
· Acceptance test – user level test for feature
[bookmark: _Toc318206724]Notifications 
[bookmark: _Toc318206725]Types of notifications in Jenkins 
· Failure, second failure, success, etc
· Active/push – radiators/SMS vs passive/pull – rss/dashboard
· RSS - /rssAll, /rssFailed and rssLatest
· Radiator view plugin uses the entire screen
· Extreme feedback – physical/audio devices
[bookmark: _Toc318206726]Importance of notifications
· Fixing a build is high priority so need to know it is broken
· Communicating the status to all parties
[bookmark: _Toc318206727]Distributed Builds 
[bookmark: _Toc318206728]What are distributed builds? 
· Running builds on a different machine than master
[bookmark: _Toc318206729]Functions of masters and slaves 
· Master – basic Jenkins install
· Slaves – just for running jobs
[bookmark: _Toc318206730]Plugins 
[bookmark: _Toc318206731]What are plugins? 
· Add functionality to core Jenkins
[bookmark: _Toc318206732]What is the plugin manager?
· UI for uploading/managing plugins
[bookmark: _Toc318206733]Jenkins Rest API 
[bookmark: _Toc318206734]How to interact with it
· Format: XML or JSON
· Python and Ruby wrapper APIs
[bookmark: _Toc318206735]Why use it? 
· Programmatic access
[bookmark: _Toc318206736]Security 
[bookmark: _Toc318206737]Authentication versus authorization 
· Authentication – identify a user
· Authorization – what user can do
[bookmark: _Toc318206738]Matrix security 
· Maps roles to permissions
· Major categories: overall, slave, job, run, view and SCM
Definition of auditing, credentials, and other key security concepts 
· Auditing – logging user operations and changes
· Credentials – username/password or the like for access
[bookmark: _Toc318206739]Fingerprints 
[bookmark: _Toc318206740]What are fingerprints? 
· MD5 checksum of files
· UI says for jar files, but works for any type of file
[bookmark: _Toc318206741]How do fingerprints work? 
· The first time you run a job with a post build step to generate a fingerprint, a new left navigation option shows up to check a file’s fingerprint.
· You can upload a file you have to see if any file Jenkins knows the fingerprint of matches.

[bookmark: _Toc318206742]Artifacts 
[bookmark: _Toc318206743]How to use artifacts in Jenkins 
· Download, put in Nexus, deploy, etc
Storing artifacts 
· Can archive
· Can control discard policy
[bookmark: _Toc318206744]Configuration Management (Tools such as Chef, Puppet, etc.) 
[bookmark: _Toc318206745][bookmark: OLE_LINK1][bookmark: OLE_LINK2]Elements of software configuration management 
· Tracking/controlling changes in the software
· Includes version control
[bookmark: _Toc318206746]Change management policies 
· Not sure what they mean here. This is a big topic
[bookmark: _Toc318206747]Importance of software configuration management 
· Need to know what you deploy!
[bookmark: _Toc318206748]Using 3rd party tools 
[bookmark: _Toc318206749]How to use 3rd party tools with Jenkins 
· Setup in Manage System the location on disk or download from there
· Ex: JDK, Maven, Git
· Can install automatically or from file system



[bookmark: _Toc318206750]Chapter 2 – Jenkins Usage
[bookmark: _Toc318206751]Jobs 
[bookmark: _Toc318206752]Organizing jobs in Jenkins 
· Jobs are organized in folders
[bookmark: _Toc318206753]Parameterized jobs
· Check “This build is parameterized” and enter parameters/default values
· Run directly with “Build with Parameters” or call from upstream job with “trigger parameterized build” post build action and passing parameters
[bookmark: _Toc318206754]Usage of Freestyle/Pipeline/Matrix/Maven/Literate 
· Freestyle – most flexible job
· Pipeline – enter code in DSL. There is a snippet generator which generates the Groovy for common operations and lists the available environment variables.
· Matrix (multi-config) – Specify a configuration matrix with one or more dimensions. Runs all combinations when build.
· Axis: slave, label (for slave) or user defined (string)
· Combination filter: if don’t want cross product of all axis to run
· Can execution “touchstone” builds first to specify which job(s) should run first and if this should skip the others
· Maven  - less options than Freestyle since can assume based on Maven conventions
· Literate – brand new plugin (Dec 2015) – allows specifying build commands in README.md file in source control. A literate job is a type of multi-branch job. (searches for new branches and creates jobs in folder automatically)
[bookmark: _Toc318206755]Builds 
[bookmark: _Toc318206756]Setting up build steps and triggers 
· Common build steps include Maven/Ant, execute shell, start/stop Docker container
· Common triggers include time/periodic, SCM polling, upon completion of another job
[bookmark: _Toc318206757]Configuring build tools 
· In Manage Jenkins > Manage System
· Install automatically or via system
[bookmark: _Toc318206758]Running scripts as part of build steps 
· Can run OS script or Groovy script
· Groovy scripts can run as system or user level. System has access to Jenkins object model
[bookmark: _Toc318206759]Source Code Management 
[bookmark: _Toc318206760]Polling source code management 
· Set schedule using cron format
· minute hour dayOfMonth month dayOfWeek
· For dayofWeek, 0 is Sunday and 7 is Saturday
· Can use H (or H/2 etc) for minute column to use a hash based on the job name to distribute jobs so don’t all start at the top of the hour.
· Also support, @yearly, @annually, @monthly, @weekly, @daily, @hourly and @midnight
· @Midnight means between midnight and one am since uses hash to distribute
· Required URL
· Optional credentials
· Options vary by repo. Ex: SVN lets you specify infinity/immediates/etc as checkout depth. Git lets you specify a branch specifier
[bookmark: _Toc318206761]Creating hooks 
· Hook script in repository triggers job
· Ex: Github plugin provides hook
[bookmark: _Toc318206762]Including version control tags and version information 
· Git allows you to create a tag for every build
· Version Number plugin lets you include info in build name
[bookmark: _Toc318206763]Testing
[bookmark: _Toc318206764]Testing for code coverage 
· In build, must create XML file with data
· Post Build Action to publish
· For Java: Cobertura and JaCoCo
· In Cobertura, can set thresholds for weather icons:
· Sunny - % higher than threshold
· Stormy - % lower than threshold
· Unstable - % lower than threshold
· In Jacoco, can set thresholds for sunny and stormy
[bookmark: _Toc318206765]Test reports in Jenkins 
· Publish JUnit or TestNG reports
· In JUnit, can set amplification factor - 1.0 means 10% failure rate scores 90% health. .1 means 10% failure rate scores 99% health.
[bookmark: _Toc318206766]Displaying test results 
· Configure as Post Build Action
· Point to xml files: ex: reports/*.xml
· Can drill down to see details of tests runs and durations
[bookmark: _Toc318206767]Integrating with test automation tools 
· Can run acceptance tests later in pipeline than unit/component tests
[bookmark: _Toc318206768]Breaking builds 
· JUnit allows choosing whether to fail builds on test failures - default is “unstable” not failure
[bookmark: _Toc318206769]Notifications 
[bookmark: _Toc318206770]Setup and usage 
· Setup in post build action section
[bookmark: _Toc318206771]Email notifications, instant messaging, build radiators 
· Email
· Same recipient for each one (except can add committers since passed)
· Email ext 
· lets you customize the message and tailor the recipients per trigger
· can send on failing, still failing, unstable, still unstable, successful, etc
· Jabber and IRC for instant messaging
· Since build radiators are full screen, the only way to edit is to add /configure to the URL
[bookmark: _Toc318206772]Alarming on notifications 
· Extreme notifications can have a video or audio cue in the real world
[bookmark: _Toc318206773]Distributed Builds 
[bookmark: _Toc318206774]Setting up and running builds in parallel 
· Builds run on different executors
· Multi-configuration jobs run the pieces in parallel
[bookmark: _Toc318206775]Setting up and using SSH slaves, JNLP slaves, cloud slaves 
· Can launch local slaves with SSH (blocking or non-blocking IO), Java Web Start, command line on master or Windows service
[bookmark: _Toc318206776]Monitoring nodes 
· Monitoring page uses JMelody
· Memory/CPU/etc stats
· Can see heap dump/GC/etc
[bookmark: _Toc318206777]Plugins 
[bookmark: _Toc318206778]Setting up and using Plugin Manager 
· Can provide a HTTP proxy if needed
· Can specify alternate update center URL for JSON
· Listed installed plugins
· Can install/upgrade/uninstall plugin
· Can unpin plugin so doesn’t use specific version of plugin 
[bookmark: _Toc318206779]Finding and configuring required plugins 
· Updates tab – for upgrading plugin already have
· Available tab – for downloading new plugins
· Advanced tab – for uploading plugin hpi/jpi file from disk
· Configure plugins on Manage Jenkins -> Manage System
[bookmark: _Toc318206780]CI/CD 
[bookmark: _Toc318206781]Using Pipeline (formerly known as Workflow) 
· Use DSL to specify jobs to be built
· Example: node { stage ‘x’ echo ‘1’ stage ‘y’ echo ‘2’  }
· Sample commands:
· build 'jeanne-test'
· svn - checkout
· retry – retry body up to X times
· timeout – limit time spent in block
· stash/unstash
· load – include a Groovy script
· parallel – specify two branches to run in parallel and whether to failFast
· When run build, see table with column and duration for each stage. Row is build #. Cell color coded for pass/fail. Can see log for each stage.
[bookmark: _Toc318206782]Integrating automated deployment 
· Have the pipeline itself triggered by SCM
· Then the pipeline triggers the commit job first followed by the rest of the jobs in the pipeline
· The docker variable can be used as a build step in the pipeline or to surround other lines
[bookmark: _Toc318206783]Release management process 
· Not sure what this refers to. Gates/approvals?
[bookmark: _Toc318206784]Pipeline stage behavior
· Stages run one at a time unless specify parallel
· A subsequent stage only runs if the prior one was successful
[bookmark: _Toc318206785]Jenkins Rest API
[bookmark: _Toc318206786] Using REST API to trigger jobs remotely, access job status, create/delete jobs 
· /api shows docs for the REST API at that level of the object model
· /api/xml, /api/json, /api/json?pretty=true, /api/python and /api/python?pretty-true
· Choose “trigger builds remotely” on build and set token to allow POST call. 
· Run build: POST to JENKINS_URL/job/job-name/build?token=MY_TOKEN
· Run build with reason: POST to JENKINS_URL/job/job-name/build?token=MY_TOKEN&cause=xyz
· Run Parameterized Build: POST to JENKINS_URL/job/job-name/buildWithParameters?token=MY_TOKEN&param=xyz
· Error handling:
· If try to call /build for parameterized job, get a 400 error
· If try to call with wrong token, get a 403 error
· If don’t choose “trigger builds remotely”, it worked
· CSRF
· Get token at JENKINS_URL/crumbIssuer/api/xml 
· Pass .crumb as header with POST
· All job (at top level) latest status:  JENKINS_URL/api/xml
· Build numbers and urls for a job: JENKINS_URL/job/jobName/api/xml
· Build result and details: JENKINS_URL/job/jobName/buildNumber/api/xml
· Create job: POST to JENKINS_URL/createItem?name=jobName and post config.xml
· Delete job: POST to JENKINS_URL/job/jobName/doDelete
· Enable job: POST to JENKINS_URL/job/jobName/enable
· Disable job: POST to JENKINS_URL/job/jobName/disable
[bookmark: _Toc318206787]Security 
[bookmark: _Toc318206788]Setting up and using security realms 
· Choices include Servlet Container, Google SSO, OpenId, Jenkins user database, LDAP, UNIX group/user database, JCOC SSO
[bookmark: _Toc318206789]User database, project security, Matrix security 
· People link shows user list + committers
· Matrix based security – control privileges granularly using user ids/groups
· Project based matrix authorization security – Matrix based + set privileges on job configuration page as well
· Role based matrix authorization security – Manage Roles to control permissions by group. Adds groups/roles tabs to projects
[bookmark: _Toc318206790]Setting up and using auditing 
· Manage Jenkins > System Log – for logging
· Job Configuration History plugin – for job config
· Audit Trail plugin – for Jenkins config
[bookmark: _Toc318206791]Setting up and using credentials 
· Domain – URL, host etc
· Credentials – username/password, cert, etc
· Use by choosing from pull down in job
[bookmark: _Toc318206792]Fingerprints 
[bookmark: _Toc318206793]Fingerprinting jobs shared or copied between jobs 
· Used to determine if a dependency has changed
· See which projects use a dependency
· See where fingerprinted files came from
[bookmark: _Toc318206794]Artifacts 
[bookmark: _Toc318206795]Copying artifacts 
· Build step to copy artifacts from another build
· Can choose which ones want to include/exclude by pattern
[bookmark: _Toc318206796]Using artifacts in Jenkins 
· Can refer to artifacts after build
· Treated specially not just as part of workspace
[bookmark: _Toc318206797]Artifact retention policy 
· By default, kept same length of time as build log.
· Can keep less time to save disk space
[bookmark: _Toc318206798]Alerts
[bookmark: _Toc318206799] Making basic updates to jobs and build scripts 
· Not sure what they mean here
[bookmark: _Toc318206800]Troubleshooting specific problems from build and test failure alerts 
· Not sure what they mean here





[bookmark: _Toc318206801]Chapter 3 – Building Continuous Delivery Pipelines
[bookmark: _Toc318206802]Pipeline Concepts 
[bookmark: _Toc318206803]Value stream mapping for CD pipelines 
· Entire process from concept to cash for a product
· Includes non code aspects such as product discovery
· Shows were time goes in process and where waits/delays are
· CD pipeline is subset of value stream map
[bookmark: _Toc318206804]Why create a pipeline? 
· Automated manifestation of process for getting software from version control to users
· Allows for phases of increasing fitness
[bookmark: _Toc318206805]Gates within a CD pipeline 
· Provide a point for approval before continuing.
[bookmark: _Toc318206806]How to protect centralized pipelines when multiple groups use same tools 
· Not sure what this means. Approvals? Security?
[bookmark: _Toc318206807]Definition of binary reuse, automated deployment, multiple environments 
· Binary reuse – Use other components as packaged, artifacts that have passed success criteria
· Automated deployment – using the same script to deploy to every environment
· Multiple environments – resources/configuration needed to work: ex: test, QA, Prod
[bookmark: _Toc318206808]Elements of your ideal CI/CD pipeline – tools 
· Source control repository
· Binary repository
· Automated testing
· Capacity testing
· Deployment
[bookmark: _Toc318206809]Key concepts in building scripts (including security/password, environment information, etc.) 
· Credentials plugin for password
· Keep environment information in source control
· Different script for each stage in the pipeline
[bookmark: _Toc318206810]Upstreams and downstreams 
[bookmark: _Toc318206811]Triggering jobs from other jobs 
· Build other projects 
· Comma separated list of jobs
· Can specify to trigger only on good builds, good builds + unstable builds and always (even on failure)
· All jobs share same trigger
· Trigger parameterized build on other projects
· Comma separated list of jobs
· Can control based on success, unstable, failure only, aborted, etc
· Can set up multiple triggers so each set has different rules on when to run
· Parameter types include boolean, string, from a property file, current build parameters, etc
· Can pass through information like slave or Git/SVN trigger info
[bookmark: _Toc318206812]Setting up the Parameterized Trigger plugin 
· Check “This build is parameterized” and setup parameters
· Can use Node to specify slave by name from select list or label to specify slave’s build label
[bookmark: _Toc318206813]Upstream/downstream jobs 
· If A depends on B, B is the upstream job
[bookmark: _Toc318206814]Triggering 
[bookmark: _Toc318206815]Triggering Jenkins on code changes 
· For a commit build
[bookmark: _Toc318206816]Difference between push and pull 
· Pull - Set up a SCM polling trigger 
· Push – Set up a hook from the repository to trigger job
[bookmark: _Toc318206817]When to use push vs pull 
· Pull for when you don’t control the repository or polling is ok
· Push for when you need an immediate build or don’t want to waste resources on polling
[bookmark: _Toc318206818]Pipeline (formerly known as Workflow) 
[bookmark: _Toc318206819]Benefits of Pipeline vs linked jobs 
· Scripted – can code loops/conditionals
· Resilient – can survive Jenkins restarts
· Pausable – can get manual approval
· Efficient – can restart from checkpoints
· Visualized – can see in dashboard
[bookmark: _Toc318206820]Functionalities offered by Pipeline 
· Build steps, pauses, parallelization, deploy, stash/unstash, etc
· Can run on certain node with node(‘master’) {}
· Can prompt user with input ‘query’
· Can do anything Groovy can do
· Can create stages
[bookmark: _Toc318206821]How to use Pipeline 
· Put commands want to run inside node{}
· Use snippet generated or write groovy script
· Can store global libraries in git at git clone <Jenkins>/workflowLibs.git
[bookmark: _Toc318206822]Pipeline stage concurrency 
· Parallel lets you run stages at same time
[bookmark: _Toc318206823]Visualization
[bookmark: _Toc318206824]Options to visualize jobs’ relationships 
· Build Pipeline view – shows upstream/downstream dependencies for one job
· A pipeline automatically creates a stage view – can click to see “Full Stage View”
· Delivery pipeline view – not on exam? – shows more details about stages
[bookmark: _Toc318206825]When to use various options for visualizing jobs’ relationships 
· Can restrict to only include successful builds
[bookmark: _Toc318206826]Information offered by a build pipeline view 
· Dependencies
· Status
· When run
[bookmark: _Toc318206827]How to set up build pipeline visualization 
· Create a new view
· Choose job to start from
· Can also include in a dashboard view so have more than one per page
[bookmark: _Toc318206828]Folders
[bookmark: _Toc318206829]How to control access to items in Jenkins with folders 
· Role Based Access Control can control folder
· Can control level as current/child/grandchild
[bookmark: _Toc318206830]Referencing jobs in folders 
· <jenkinsHome>/job/folder/job/name
[bookmark: _Toc318206831]Parameters 
[bookmark: _Toc318206832]Setting up test automation in Jenkins against an uploaded executable 
· File parameter in parameterized job
· Prompted to upload it when running manually
[bookmark: _Toc318206833]Passing parameters between jobs 
· Can type parameters, use property file, etc
[bookmark: _Toc318206834]Identifying parameters and how to use them: file parameter, string parameter 
· String parameter referred to by variable name ${TEST}
· File parameter placed in the workspace in the parameter name
[bookmark: _Toc318206835]Jenkins CLI parameters 
· Download jar from <Jenkins>/jnlpJars/jenkins-cli.jar
· Run as java –jar Jenkins-cli.jar –s <jenkinsUrl> help
· Add –noKeyAuth if don’t want to use SSH key
[bookmark: _Toc318206836]Promotions 
[bookmark: _Toc318206837]Promotion of a job 
· Can run steps after a gate
· Ex: archive artifacts, deploy, etc
[bookmark: _Toc318206838]Why promote jobs? 
· Way of communicating a build is good
[bookmark: _Toc318206839]How to use the Promoted Builds plugin 
· Promote Builds plugins lets you specify actions that require approval
· Adds promotion status link when check “Promote builds when…”
· Approvals include manually, automatically, based on downstream/upstream builds
· Can run multiple build steps (or post build actions) to run after approval – retry-able independently. Like a separate build.
· See icon once approved or if steps after approval fail
· Can have multiple promotion processes
[bookmark: _Toc318206840]CD Metrics
[bookmark: _Toc318206841]KPIs/metrics for CI/CD 
· Cycle time
· Test coverage, cyclomatic complexity, duplication, etc
· Number of defects
· Velocity
· # Commits per day
· # Builds per day – success, failures and total
· Duration of build
[bookmark: _Toc318206842]Determining how many builds failed, succeeded 
· Dashboard view – build stats, job stats
[bookmark: _Toc318206843]Determining how long a build takes 
· Trend on individual job
[bookmark: _Toc318206844]Determining how often code is checked-in 
· Number of commit stage builds
[bookmark: _Toc318206845]How to use metrics/KPIs 
· Tracking improvement
· Identifying limiting constraint
[bookmark: _Toc318206846]Notifications 
[bookmark: _Toc318206847]How to radiate information on CD pipelines to teams
· Email , radiator, etc





[bookmark: _Toc318206848]Chapter 4 – CD as Code Best Practices

[bookmark: _Toc318206849]Distributed builds architecture 
· Run jobs on slave
· More secure because jobs run on slave
· More scalable because can add slaves
· Vertical growth – master is responsible for more jobs
· Horizontal growth – creation of more masters
· Recommend to virtualize slaves, but not master for performance
[bookmark: _Toc318206850]Fungible (replaceable) slaves 
· Can configure third party tools to automatically install on slaves
· Best practice is to make slaves interchangeable, but can tie jobs to slaves
[bookmark: _Toc318206851]Master-slave connectors and protocol 
· SSH connector – preferred option. Slaves need SSHD server and public/private key
· JNLP/TCP connector – Java Network Launch Protocol start web agent on slave through JWS (Java Web Start). Can start via browser or OS service
· JNLP/HTTP connector – like JNLP/TCP except headless and over HTTP
· Custom script – launch via command line
[bookmark: _Toc318206852]Tool installations on slaves 
· Can install manually or have Jenkins do it
[bookmark: _Toc318206853]Cloud slaves 
· EC2 for Amazon Cloud
· JCloud – for other clouds
[bookmark: _Toc318206854]Containerization 
· Docker image to deploy/run application
· “Build inside a Docker Container” option
[bookmark: _Toc318206855]Traceability 
· Docker Traceability plugin uses fingerprints for images
[bookmark: _Toc318206856]High availability 
· Master must be on network attached storage device
· Don’t do builds on master or at least not with workspace under JENKINS_HOME
· HAProxy serves as the reverse proxy
[bookmark: _Toc318206857]Automatic repository builds
· Not sure what this means. It does not exist in any documentation online except the PDF study guide. 

[bookmark: _Toc318206858]Chapter 5 – Cloudbees Jenkins Platform
[bookmark: _Toc318206859]Reference architecture 
· Products
· Jenkins Enterprise – open source Jenkins plus plugins for High Availability, RBAC, Update Center, folders, etc.
· Cloudbees Jenkins Operations Center – dashboard, manage multiple masters
· No builds on CJOC or downstream masters
· Recommend hundreds, not thousands of jobs on each downstream master
· Faster recovery and less frequent failures
· Proxy fronts primary master and checks availability
· CJOC master is a master with CJOC installed
· CJOC master knows about all slaves. Like a cloud for slaves
· Can set up different update centers for different downstream masters
[bookmark: _Toc318206860]Role-based Access Control (RBAC) 
· Setup in manage security. Choose role based matrix authorization strategy (vs matrix based on project matrix based)
· Defaults to logged in users can do anything and anonymous users can do nothing
· Default groups – Administrators, Developers, Browsers 
· Default roles – anonymous, authenticated, administer, develop, browse
· Roles > Manage – global matrix of role/permission mappings
· Two types of roles – system defined and user defined
· Can’t get rid of anonymous and authenticated roles
· Extended read permission – can view, but not edit config
· Support group definitions out of the box – Jenkins, jobs, Maven modules, slaves, views and folders
· To prevent folder role from propogating to children - Group icons– blue means pinned
· To prevent folder role from inheriting from parent – Roles > filter 
[bookmark: _Toc318206861]Folders Plus 
Features over folders plugin:
· tie slaves to folders
· move jobs between folders
· health reports other than child with worst health (ex: average health, job status, enabled projects)
· set icons on folder other than default (ex: aggregate of status, built in icons or by URL)
· pass environment variables to all jobs in folder
· display jobs from subfolders on higher level view
· restrict what goes in folder

[bookmark: _Toc318206862]Templates 
· Types
· Auxiliary template – nested attributes within another template
· Builder/publisher template – locked down builder/publisher
· Folder/job template – configure folder/job
· If define in folder, limited to that folder
· Transformation types
· Jelly – has ${} and some control tags – like JSTL but different tags. 
· Groovy template transformation – like a JSP in Groovy. Remember to backslash $
· Groovy template for Pipleine
· Variables instance, model, parent (Folder or Jenkins instance itself) and parentInstance (the folder template where the job template sits)
· When admin updates template, automatically approved. When non-admin updates template, checked against whitelist of approved code or added to “in process script approval” list for admin. 
· Groovy sandbox – can whitelist method signatures first time used. Format method class.Name methodName argTypes (or static method). Admins use whitelist too when sandbox on.
· Creating with REST
· POST to /instantiate
· Or /createItem and specify JobPropertyImpl for template

[bookmark: _Toc318206863]Setting up High Availability (HA) 
· HA for Jenkins is multiple JVMs forming a cluster. 
· It is a singleon – only one is master at a time
· Config – NFS /shared disk, at least two servers, floating IP
· Jenkins-ha-monitor provides monitoring on when to switch IP between servers
· Need three pieces: 
· Jenkins enterprise war
· Jenkins enterprise proxy HA war – start this and it proxies/passes through to regular Jenkins.war
· Jenkins enterprise HA monitoring tool – triggers transfer logic from outside Jenkins
· Data survives failover except builds in progress and user sessions
· Typically takes a few minutes because has to start up secondary
[bookmark: _Toc318206864]CloudBees Jenkins Operations Center (CJOC) 
[bookmark: _Toc318206865]Shared clouds 
· Same access logic as shared slaves
· Clouds provision slaves to master
· Local Types: java web start or virtual machine
[bookmark: _Toc318206866]Cloud configurations 
· Supports Docker, Amazon EC2 and Microsoft Azure clouds
· Instance caps are managed on each master
· Credentials shared across masters
[bookmark: _Toc318206867]Shared slaves 
· Client masters in the same CJOC can share slave executors
· Client masters must be siblings or in same subfolder
· Slaves are leased to client masters for one job if CJOC is available. If it goes down, client master keeps slave until comes back.
· Client masters prefer slaves in current “folder” then go to parent
· Client masters are not allowed to use slaves at sibling folder level
· Create shared slaves with CJOC

[bookmark: _Toc318206868]Analytics 
· Jenkins masters report data to CJOC
· Display dashboards
· Can create custom dashboards
· To reindex and get historical data in CJOC
· new Cluster Operations job
· operation = masters 
· target masters == from operations root
·  step == reindex
· Can run Elastic Search embedded or remote
· Uses Kibana open source analytics and visualization platform
· Includes System/JVM metrics, Web UI metrics, Jenkins metrics, health checks
· Retention of data (reindexing resets clock)
· Every 10 seconds metrics – saved 3 days
· Hourly metrics – saved 3 years
· Build reporting – saved 3 years
· Other info saved forever

[bookmark: _Toc318206869]Cluster Operations 
· Used to performance maintenance operations from CJOC
· Ways to run
· Checkbox on list view to prepare for shutdown or safe restart with left navigation “cluster operations”
· Left navigation “cluster operations” on single master
· Cluster operations job
· Each operation in job has:
· type = master or update center
· source = root,  parent, parameter, etc 
· optional filter on path, online status, etc
· steps
· for master – Backup master, install/enable/disable plugin, execute groovy script, prepare for shutdown, refresh update center metadata, restart now, safe restart, upgrade jenkins, upgrade all plugins
· for update center – Delete/promote/update core, delete/promote/update plugin, pull everything, pull new versions, refresh upstream sources, track latest core, track latest plugins
· advanced options
· # parallel items
· timeout per step
· failure mode – immediately, tidy (at end of current step), at end
· build result to use on failure - unstable, failure, aborted
· If you have multiple items to operate on, they will occur in parallel

[bookmark: _Toc318206870]Pipeline Checkpoints (formerly known as Pipeline Checkpoints) 
· All pipelines can be resumed
· For a more granular resume, put checkpoint ‘name’ in your script.
· Local variables saved at checkpoint. Call stash if want to store files.
· Restart using Checkpoints link or retry icon
· Call unstash to retrieve files into workspace
· Get new build #, but skips all steps prior to checkpoint
· Place checkpoint outside of node{} so not reliant on state of workspace

[bookmark: _Toc318206871]Custom Update Center 
· Benefits: restricting plugins, sharing in house developed plugins
· Options:
· Versions of plugins - Require explicit configuration or Implicitly push latest
· Signature provider – ex: self signed
· Upstream sources – like proxied updated centers – Jenkins Enterprise, Open Source or Local. Can also choose types: ex LTS
· Maintenance tasks – pull new versions (of what already in update center) or pull everything 
· Tabs
· Core – Jenkins itself
· Plugins – Jenkins plugins
· Tool installers – ex: Groovy, Chrome Driver
· Upload core – upload Jenkins war from local machine
· Upload plugin – upload plugins from local machine
· Click Store button to save a version locally
[bookmark: _Toc318206872]Multi-branch 
· Benefits of Workflow Multi-Branch: automatic creation/deletion of job for each new/deleted branch in repo
and configuring properties by branch
· Uses marker file Jenkinsfile to define pipeline logic and recognize a job should be created
· Job gets deleted when branch or Jenkinsfile removed
· Create new Multibranch Workflow job
· Can give named branches different properties by specifying exceptions
· Creates a folder for these jobs to exist in
[bookmark: _Toc318206873]Docker plugins
· Docker is containers for deployment
· Dockerhub (hub.docker.com) is like github – hosting for Docker
· Plugins
· Docker – provision slave, run single build and then tear down that slave
· Dockerhub notification - provides a hook so Docker can trigger Jenkins jobs when the image is updated
· Docker build and registry - allows publishing to the Docker registry
· Docker traceability – history of deployments/images
· Docker pipeline provides docker variable to pipeline plugin
· Examples: 
· Build container: docker.build ‘path/app:${env.BUILD_TAG}’
· Run inside container: docker.image(‘name’).inside { /* commands */ } 
· Reference container from outside in docker.withRun(‘name’).inside { /* commands */ } 
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