
AWS	Associate	Developer	Study	Guide		
	
Read	https://www.selikoff.net/2019/03/02/how-i-recommend-studying-for-the-
aws-associate-developer-exam/	before	this	study	guide	
	
AWS	Associate	Developer	Study	Guide	..	1	
Security	...	2	
KMS	...	2	
IAM	..	3	
EBS	..	4	
S3	...	4	
CloudFront	...	5	
Lambdas	...	6	
ELB	..	7	
Route	53	..	7	
API	Gateway	..	7	
X-ray	...	8	
RDS	..	9	
DynamoDB	...	9	
Elasticache	...	11	
SQS	..	12	
SNS	..	12	
SES	...	13	
Kinesis	...	13	
Developer	Tools	..	13	
CloudFormation	..	14	
Elastic	Beanstalk	...	15	
Deployment	strategies	...	15	
CloudWatch	...	16	
Other	..	16	
HTTP	Error	codes	...	16	

	
	 	

Security	
API	use	 • Better	to	use	AWS	roles	within	AWS	than	

access/secret	keys	
Users	 • People	
Groups	 • Users	with	shared	permissions	

• Assign	policies	to	groups	
Roles	 • Assigned	to	AWS	resources	

• Users	and	applications	assume	roles	
• Grant	permissions	to	entities:	ex:	user,	app,	

service	(ex:	Ec2,	Lambda)	
• Prevents	having	to	use	access/secret	key	
• Controlled	by	policies	

Policies	 • JSON	document	defining	permissions	
• Attach	to	user/group/role	
• Includes	allow/deny,	action	and	resources	

Access	key/secret	access	
key	

• Can	only	view	secret	access	key	once	
• If	lose,	must	regenerate	
• Use	if	connecting	from	outside	AWS	

Policy	Generator	 • Creates	JSON	
• Type:	SQS,	SNS,	S3,	VPC	Endpoint,	IAM	Policy	
• Statements:	Allow/Deny,	Principal’s	ARN,	AWS	

Service,	Actions,	ARN	of	resource	
• Principal	can	be	*		
• Resource	can	be	arn	or	arn/*	for	all	within	

ARN	 • Amazon	Resource	Name	
• Ex:	arn:aws:iam::accountId:user/name	

Encryption	types	 • In	transit	(SSL/TLS)	
• At	rest	(keys)	
• Client	side	encryption	

CloudHSM	 • Hardware	security	module	(for	keys)	

KMS		
General	 • Key	Management	Service	

• Create/control	data	encryption	keys	
• Multi-tenant.	
• Best	practice;	user	who	manages	keys	can’t	

encrypt/decrypt	
Keys	 • Encryption	keys	are	regional.	Must	decrypt	in	

region	encrypted	in	
• Customer	master	key	–	generated	by	Amazon	or	

AWS	provided.	Cannot	be	exported.	
APIs	 • encrypt	

• decrypt	

• re-encrypt	–	re-encrypt	with	new	master	key	
and	delete	original	encrypted	file	

• enable-key-rotation	–	rotates	the	key	yearly	
Envelope	encryption	 • Encrypt	envelope	(data)	key	

• Master	key	encrypts/decrypts	envelope	key	
• Envelope	key	encrypts/decrypts	data	

Systems	Manager	
Parameter	Store	

• Store	confidential	information	
• Under	EC2	in	console	
• Create	key/value	parameter	as	string/list	
• Encrypt	with	KMS	
• Available	from	EC2,	CloudFormation,	Lambda	

IAM	
Overview	 • Identity	and	Access	Management	

• Manage	users	and	their	access	to	AWS	
Console	

• Pass	role	to	EC2	via	instance	profile	
Web	Identity	Federation	 • Authenticate	with	Amazon/Facebook/Google	

• Trade	web	token/auth	code	for	temporary	
AWS	credentials	

Cognito	 • Identity	Broker	
• Provides	Web	Identity	Federation	
• Can	also	use	SAML	
• Synchronizes	user	data	across	devices	using	

SNS	
• Good	for	mobile	apps	
• No	custom	code	
• User	pools	-	user	directories	to	manage	sign	

up/sign	in.	Generators	JSON	Web	Tokens	
• Identity	pools	–	unique	identity/temp	creds	
• To	configure;	needs	user	pool,	app	client	and	

domain	
Policy	types	 • Managed	Policies	–	created	by	AWS.		

• Customer	Managed	Policies	–	only	within	
your	account.	More	granular	than	built	in.	

• Inline	Policies	–	embedded	in	
user/group/role.	Only	use	if	need	to	ensure	
will	not	be	reused.	

AssumeRoleWithWebIdentity	 • From	STS	(Security	Token	Service)	
• API	to	return	temporary	security	creds	
• Key	for	creds:	Includes	AssumedRoleUser	

ARN	and	AssumedRoleID	(not	IAM	role)	
• Creds	include	session	token,	access	key,	

secret	access	key	

• Temporary	creds	default	to	an	hour	
Cross	account	access	 • Same	creds	to	use	multiple	accounts	in	

console.	Don’t	need	to	re-login		
• Can	grant	specify	policies	from	one	account	

EBS	
Overview	 • Virtual	disk	

• Block	storage	
• Attach	to	EC2	instances	
• Stored	in	specific	availability	zone	
• Automatically	replicated	within	zone	

Encryption	 • Creating	volume	from	encrypted	snapshot	is	
encrypted	

• Creating	volume	from	unencrypted	snapshot	is	
unencrypted	

• If	copy	an	unencrypted	snapshot	to	create	a	new	
snapshot,	can	encrypt	it	when	creating	the	copy.	
Then	can	make	AMI	of	it	to	have	encrypted	root	
device.	

S3	
Overview	 • Object	storage,	key/value	pairs	

• Not	for	database,	OS	
• Unlimited	storage	
• High	availability/disaster	recovery	built	in	
• Zero	bytes	-	5TB.	Can	upload	up	to	5GB	with	

PUT.	Use	multi-part	upload	API	for	100MB+	
• Files	stored	in	buckets	or	folders	within	buckets,	

no	nested	buckets	
• Bucket	names	must	be	globally	unique	
• Basic	charges	for	storage,	data	transfer	and	

requests	
• Buckets	partitioned	by	key	name	
• URL:	bucket.s3.location.amazon.aws.com	

Data	consistency	 • Read	after	write	–	available	right	away.	For	new	
objects(PUTS)	

• Eventual	consistency	–	can	take	time	to	
propagate.	For	updating	objects	(PUTS)/deleting	
objects	(DELETES)	

Storage	Tiers	 • S3	–	99.99%	availability,	11	9’s	durability.	Stored	
across	multiple	facilities.	Designed	to	sustain	
loss	of	two	data	centers	

• S3	-	IA	(Infrequently	accessed)	–	Lower	fee,	but	
charged	every	time	access.	Min	30	days	

• S3	–	One	Zone	IA	–	99.5%	availability.	Only	in	
one	availability	zone.	Min	30	days	

• Reduced	Redundancy	Storage	–	99.99%	
durability.	For	data	that	can	be	recreated	if	lost.	
Not	recommended	for	use.	

• Glacier	–	for	archiving.	Very	cheap.	For	data	
infrequently	accessed.	Several	hours	to	retrieve	
data.	Min	90	days	

• S3	–	Intelligent	Tiering	–	2	tiers.	Automatically	
moves	data	to	most	cost	effective	tier	based	on	
how	frequently	access.	New	option.	

• Seet	using	x-amz-storage-class	header	
Security	 • Buckets	private	by	default	

• Bucket	policies	at	bucket	level	
• Access	control	lists	–	at	object	level	
• Can	log	all	access	to	bucket	in	another	bucket	

Encryption	at	rest	 • AES-256/SSE-S3	–	S3	Managed	keys	-	each	
object	gets	own	key	

• AES-KMS/SSE-KMS	–	Key	Management	Service	–	
additional	key	to	encrypt	data’s	encryption	key.	
Get	audit	trail	of	when	key	used.	

• SSDE-C	–	Customer	provided	keys	
• Enable	when	creating	a	bucket.	Alternatively,	

create	Bucket	policy	to	deny	all	PUTS	without	x-
amz-server-side-encryption	header	

CORS	 • Cross	Origin	Resource	Sharing	
• Avoids	same	origin	policy	problem	(which	

prevents	XSS)	
• Allow	a	resource	in	one	bucket	to	access	one	in	

another	bucket	
• Configure	as	XML	on	bucket	being	referenced	

from	elsewhere	and	specify	bucket	that	can	
access	

• Enforced	by	client	

CloudFront	
CDN	 • Content	Delivery	Network	

• Serve	static	content	from	closer	location	around	
world	

• Has	Viewer	protocol	policy	
Edge	location	 • Where	content	is	cached	and	can	be	written	

• More	edge	locations	than	availability	zones	
• Not	read	only.	Can	PUT	an	object	to	S3	

Origin	 • Where	content	starts	–	S3,	EC2,	ELB,	Route	53	

Distribution	 • Web	distributions	–	websites	
• RTMP	(real	time	messaging	protocol)	–	media	

streaming	
S3	Transfer	Acceleration	 • Uses	edge	locations	to	route	to	S3	
Caching	 • Stored	for	TTL	(time	to	live)	

• Get	charged	to	clear	cache	object	before	TTL	
Using	CloudFront	 • URL	cloudfront.net	

• Takes	about	15	minutes	to	propagate	initially	
• Slow	first	time	because	caching	at	edge	location	

Lambdas	
Overview	 • Serverless	

• Scales	continuously	with	more	functions	(can’t	
automatically	add	memory)	

• Very	cheap	
• Compute	service	
• Upload	code	to	create	Lambda	function	
• Use	cases:	event	driven	compute	service,	

compute	service	in	response	to	HTTP	requests	
• Max	timeout	changed	5	minutes	to	15	minutes	
• Max	50MB	compressed/250MB	uncompressed	

Languages	 • Node.JS,	Java,	Python,	C#,	Go,	Ruby	
Debugging	 • Lambdas	can	call	other	lambdas	

• Debug	with	XRay	
Triggers	 • Data	Stores	–	S3,	DynamoDB,	Kinesis	

• Endpoints	–	API	Gateway,	IOT,	Step	Functions,	
Alexa	

• Dev/Management	Tools	–	CloudFormation,	
CloudTrail,	CodeCommit,	CloudWatch	

• Event/Message	Services	–	SES,	SNS,	SQS,	cron	
• Other	-	Cognito	

Version	control	 • Versions	have	different	ARN	
• Versions	are	immutable	
• Qualified	ARN	has	version	suffix.	
• $LATEST	is	a	built	in	qualifier.	Create	more	

versions	by	publishing	new	version	
• Unqualified	ARN	lacks	version	suffix	
• Alias	–	name	pointing	to	a	version.	Ex:	QA	
• Can	only	edit	$LATEST	
• Can	have	0+	aliases	for	a	version	
• Can	do	blue/green	deployments	by	setting	up	an	

alias	pointing	to	two	versions	with	%	split.	(can’t	
use	$LATEST)	

Step	Functions	 • Type	of	application	integration	

• Graphical	console	to	arrange/visualize	
components	

• Automatically	triggers	next	step	
• Types	of	steps	–	sequential,	branching,	parallel	
• Coded	in	JSON	using	Amazon	State	Language	
• Generates	Lambda	Functions	
• Logs	each	step	
• Differs	from	SWF	(simple	workflow	service)	in	

that	can	only	have	one	state	definition	vs	
multiple	deciders.	Also	deciders	can’t	be	
implemented	as	lambdas.	Use	step	functions	as	
first	choice	and	SWF	if	doesn’t	meet	needs	

To	rollback	 • Change	PROD	alias	

ELB	
Overview	 • Elastic	load	balancer	

• Equally	balance	load	
Application	Load	
Balancer	

• Layer	7	(app	layer)	
• Can	make	decisions	based	on	content	
• HTTP/HTTPS	traffic	

Network	Load	Balancer	 • Layer	4	
• TCP	traffic	
• Extreme	performance/low	latency	
• Assumes	static	IP	addresses	
• Most	expensive	

Classic	Load	Balancer	 • Legacy;	no	longer	recommend	[but	on	exam]	
• Can	use	layer	4	or	7	

X-Forwarded-For	 • Original	(public	IP)	
• Load	balancer	converts	public	IPv4	address	to	

private	IP	

Route	53	
Overview	 • DNS	

• Map	domain	names	to	EC2,	load	balancer,	S3	
buckets	

Create	record	set	 • Maps	domain	name	abc.com	to	AWS	resource	

API	Gateway	
Overview	 • Managed	service	

• Publish/maintain/monitor/secure	APIs	
• “Front	door”	for	APIs	in	EC2/Lambda/web	app	
• Exposes	HTTPS	REST	endpoints	
• Each	endpoint	has	a	different	target	
• Can	log	to	CloudWatch	

• Can	configure	multiple	versions	of	API	
To	use	 • Define	API	(container)	

• Define	resources	(URL	Paths)	
• Chose	HTTP	verbs,	set	security,	choose	targets,	

set	transformations	
• Free	SSL/TLS	certs	if	using	Route	53	

API	caching	 • Reduce	load/improve	latency	
• Set	TTL	in	seconds	

Security	 • CORS	if	using	multiple	domains	
• Use	API	key	to	track/control	usage	
• Can	throttle	usage	

Create	API	 • Has	visual	editor	
• Can	create	from	New/existing/example	or	

swagger	API	
• Supports	Open	API	
• Set	HTTP	verb	
• Set	integration	type	(lambda,	HTTP,	mock,	AWS	

service,	VPC	link)	
• Set	proxy	integration	so	lambda	can	see	request	
• Set	lambda	function	name	and	region	
• Can	upload	via	copy/paste	of	zip	file	

Deploy	API	 • Makes	API	available	
• Can	test	from	here	
• Shows	stages	(like	tags)	

Import	API	 • Can	import	from	Swagger	
• Can	create	new	or	merge	existing	definition	

Throttling	 • 10K	requests/second	
• max	5000	concurrent	requests/millisecond	

across	AWS	account	
SOAP	 • Doesn’t	handle,	but	can	pass	through	
Access	control	 • IAM	roles,	lambda	authorizers,	Cognito	pools	

X-ray	
Overview	 • Collects	data	about	requests	

• X-ray	SDK	in	side	your	app.	API	sends	to	X-ray	
• SDK	adds	interceptors	to	code	to	trace	HTTP	

requests,	calls	to	other	AWS	services	and	web	
services	

• View	using	X-ray	console	–	shows	error	rate,	
traces,	timings	

Integrations	 • Works	with	Lambda,	EC2,	API	Gateway,	Elastic	
Beanstalk	and	ECS	

RDS	
Overview	 • Relational	Database	Service	
Database	Types	 • SQL	Server,	Oracle,	MySQL,	PostGres,	Aurora,	

MariaDB	
Aurora	 • Compatible	with	MySQL	
Security	 • If	EC2	and	RDS	in	different	security	groups,	need	

to	open	port	3306	
Backups	 • Automated	backup	–	1-35	days.	Daily	snapshot	

and	transaction	logs	throughout	day.	Enabled	by	
default.	Get	free	storage	space	matching	RDS	
disk	space.	

• Database	snapshots	–	manual.	Kept	even	after	
delete	RDS	instance	

• When	restore,	get	new	RDS	instance	with	new	
DNS	endpoint.	Can	restore	to	any	point	in	time.	

Multi	AZ	 • For	disaster	recovery	only		
• Synchronously	replicated	to	standby	in	another	

availability	zone	
• Automatic	failover.	Name	stays	same	even	

though	IP	changes	
Read	replica	 • For	performance/scaling	

• Up	to	5	read	replicas	
• Requires	automatic	backups	to	be	enabled	
• Can	have	read	replicas	of	read	replicas.	Latency.	
• Can	be	in	different	availability	zone	or	region	
• Not	available	for	SQL	Server	or	Oracle	
• Read	replica	can	have	Multi-AZ	
• Can	“clone”	to	be	own	db	and	turn	off	replication	
• Can	encrypt	even	if	source	is	not	encrypted	

DynamoDB	
Overview	 • NoSQL	database	

• Fully	managed,	autoscales	
• Single	digit	millisecond	latency	
• Supports	key-value	and	document	data	models	
• Stored	on	SSD	
• Spread	across	3	data	centers	
• Supports	conditional	writes	and	optimistic	

locking	with	version	numbers	
Consistency	Model	 • Eventually	Consistent	Reads	–	default.	Might	see	

stale	data	but	usually	less	than	a	second	to	
propogate	data	

• Strongly	Consistent	Reads.	All	writes	will	be	
available	for	read	

Terms	 • Tables	
• Item	–	single	record	
• Attributes	–	key/value	pairs	
• Key	-	name	of	data	
• Value	-	data	
• Documents	–	JSON,	HTML	and	XML	
• Partition	–	physical	storage	location	

Primary	key	 • Partition	key	–	unique	attribute	that	hashes	to	
partition	

• Composite	key	–	partition	key	+	sort	key.	
Partition	key	doesn’t	need	to	be	unique	but	
combined	key	does	

Security	 • IAM	Condition	–	restricts	access	by	record	
• Partition	key	must	match	user	id	
• Must	create	new	table	to	encrypt	

Scan	 • Looks	at	everything	in	table	
• Can	add	filter	to	limit	results	returned	

Query	 • ProjectionExpression	–	limit	attributes	returned	
• KeyCondition	–	like	where	clause	
• Better	performance	than	scan	
• Must	include	primary	key	
• Results	sorted	by	sort	key	(or	reverse	with	

ScanIndexForward=false)	
• Defaults	to	Eventually	Consistent	

Local	Secondary	Index	 • Must	be	created	when	create	table,	cannot	
add/remove	later	

• Same	partition	key	as	table	
• Different	sort	key	

Global	Secondary	Index	 • Can	create	when	create	table	or	later	
• Different	partition	key	than	main	table	

Performance	 • Can	reduce	impact	by	setting	smaller	page	size	
to	avoid	throttling.	

• Can	configure	parallel	scans.	Bad	if	table	already	
under	heavy	load	

Capacity	Units	 • Measure	of	provisioned	throughput	
• 1	write	capacity	unit	is	one	1KB	write/second	
• 1	read	capacity	unit	is	1	strongly	consistent	read	

of	4KB/second	
• 1	read	capacity	unit	is	2	eventually	consistent	

reads	of	4KB/second	
• No	fractional	capacity	units.	Round	up.	

On	Demand	Capacity	 • (won’t	be	on	exam	before	May	2019)	
• Autoscales	based	on	activity	
• Don’t	need	to	specify	capacity	in	advance	

• Pay	per	request	
• Provisioned	Capacity	costs	less	if	predicatable	
• Can	switch	one	per	day.	

DynamoDB	Accelerator	
(DAX)	

• Fully	managed,	clustered	in-memory	cache	
• Up	to	10x	performance	improvement	
• Microsecond	response	times	
• Ideal	for	read	heavy	bursty	workloads	
• Writes	to	cache	at	same	time	as	db	
• If	not	in	cache,	does	eventually	consistent	get	

Transactions	 • (won’t	be	on	exam	before	May	2019)	
• ACID,	span	tables	

TTL	 • Time	to	live,	measured	since	1970	
• Expiration	time	for	data	
• Marked	for	deletion	and	deleted	within	48	hours	
• Reduces	cost	by	automatically	removing	data	

Streams	 • Time	ordered	sequence	of	modifications	
• Guaranteed	delivery	exactly	once	
• Logs	stored	24	hours	
• Encrypted	at	rest	
• Separate	endpoint	from	stream	than	db	
• Primary	key	always	stored.	Before/after	can	be	

stored	too	
• Can	trigger	events	–	ex:	lambda	

If	too	many	requests	 • ProvisionedThoroughputExceededError	
• SDK	will	automatically	retry	until	successful.	
• Use	exponential	backoff	(applies	to	most	AWS	

services).	SDK	does	automatically.	Jitter	adds	
randomness	so	don’t	all	try	at	same	second	

• Check	if	request	size	too	big	
Common	APIs	 • BatchGetItem,	GetItem	

• BatchWriteItem,	PutItem	
• DeleteItem,	UpdateItem	
• Query,	Scan	

Global	Tables	 • Specify	regions	want	table	available	
• AWS	replicates	

Elasticache	
Overview	 • In	memory	cache	in	cloud	
Supports	 • Sand	DynamoDB	
Types	 • Supports	Memcached	(memory	object	caching	

with	no	persistence)	and	Redis	(in	memory	key-
value	store,	works	with	Multi-AZ	and	
maser/slave	replication.	Manages	like	RDS)	

• Use	Memcached	for:	object	caching,	simple,	large	

cache	nodes	with	threads,	scale	horizonatally	
• Use	Redis	for:	advanced	data	types,	

sorted/ranking	(ex:	leaderboard),	persistence,	
failover,	pub/sub	[unless	data	warehousing,	then	
RedShift]	

Caching	Strategy	 • Lazy	Loading	–	loads	only	when	needed.	Returns	
null	if	not	found.	Data	can	be	stale	if	changed	
after	placed	in	cache	and	before	TTL	expires	

• Write	through	–	updates	cache	when	data	
changes.	Write	penalty	because	updates	even	if	
not	needed	and	updates	even	if	not	read.	

SQS	
Overview	 • Simple	queue	service	

• Pull	based	
• Up	to	256	KB	per	message	
• Defaults	to	4	days	max	in	queue.	Can	increased	

to	two	weeks.	
• Can	build	in	autoscaling	
• First	AWS	service	

Types	 • Standard	–	default	queue,	message	delivered	1+,	
order	not	guaranteed	

• FIFO	–	message	delivered	exactly	one	in	order.	
Ends	with	.fifo.	Can	use	message	group	id	to	
guarantee	order	within	groups,	when	don’t	want	
overall	FIFO.	

Visibility	timeout	 • Number	seconds	message	invisible	after	reader	
picks	it	up	

• Message	deleted	if	job	processed.	Else	available	
for	processing	again	

• Default	30	seconds	
• Maximum	12	hours	

Polling	types	 • Short	polling	–	returns	immediately	
• Long	polling	–	waits	for	response	or	timeout.	

Maximum/default	20	seconds.	Saves	money	
when	queue	typically	empty	

Delay	 • How	long	before	readers	see	message	when	new	

SNS	
Overview	 • Simple	Notification	Service	

• Push	based,	pub-sub	
• Send	to	topics.	Can	have	multiple	subscribers	

Types	 • Devices,	SMS,	Email,	Email	JSON,	SQA,	HTTP,	
lambda	

SES	
Overview	 • Simple	Email	Service	

• Can	deliver	to	S3	or	trigger	lambda/SNS	
• Can	use	for	incoming	mail	
• Doesn’t	require	subscribing	from	the	user	

Kinesis	
Overview	 • Receive	streaming	data	
Kinesis	Streams	 • Stores	received	data	or	video	

• Stored	for	a	day;	can	increase	to	a	week	
• Stores	in	shards.	Use	more	to	increase	

read/write	in	parallel	
• Send	to	consumers	

Kinesis	Firehose	 • Data	analyzed	immediately	using	lambda	or	
forwarded.	Not	stored	locally	

• Forward	data	to	S3	or	ElasticSearch	
• Can	forward	from	S3	to	RedShift	

Kinesis	Analytics	 • Run	SQL	queries	from	firehose/streams	and	
send	results	to	S3/ElasticSearch/RedShift	

Developer	Tools	
CI/CD	 • Continuous	Integration	

• Continuous	Delivery	–	prepared	for	release	
• Continuous	Deployment	–	actually	deployed	

CodeCommit	 • Private	git	repository	
• Has	notifications	tab	to	send	SNS	message	

CodeBuild	 • Build	management	system	
• Tests/create	package:	ex:	Docker	
• Data	encrypted	in	transit	and	at	rest	

(HTTPS/SSL	connection	only)	
• SNS	notification	or	trigger	on	repo	events	
• buildspec.yml	file	lists	phases	and	commands	
• Commands	are	UNIX	Commands	
• Full	CodeBuild	log	in	CloudWatch;	partial	log	in	

CodeBuild	console	
CodeDeploy	 • Deploy	to	EC2,	on-prem	or	lambdas	

• Automatically	scales	
• Integrates	with	external	tools	(ex:	Jenkins,	etc)	
• Deployment	Group	–	set	of	EC2/Lambda.	Use	tag	

to	reference	
• Deployment	–	process/components	to	deploy	
• Deployment	Config	–	rules	and	success/failure	

conditions	
• AppSpec	File	–	deployment	actions	

• Revision	–	all	artifacts	to	deploy	
• Application	–	unique	key	
• For	Lambda,	YAML	or	JSON.	Set	version	(must	be	

0.0),	resources	(lambda	and	properites:	
name/alias/current	version/target	version)	and	
hooks	(BeforeAllowTraffic/AfterAllowTraffic	
lambdas)	

• For	EC2,	YAML.	version	(0.0),	os	
(linux/windows),	files	(source/destination	
pairs),	hooks	(BeforeInstall/AfterInstall	scripts	
location	and	timeout).	Place	appspec.yml	in	root	
dir.	

CodePipeline	 • Continuous	deployment	service	to	
visualize/automate	

• Workflow	of	stages/tasks	
• Automatically	configured	so	commits	trigger	

CloudWatch	which	triggers	CodePipeline	
• Enable	versioning	in	S3	bucket	
• Get	code	from	S3,	CodeCommit	or	GitHub	
• Manual	approvals	steps	fails	if	not	approved	in	a	

week	
OpsWorks	 • Manage	infrastructure/layers		

• Supports	Chef	and	Puppet		
Docker	 • Runs	on	EC2	

• docker	build	–t	name	
• docker	tag	name:latest	awsUrl/name:version	
• docker	push	awsUrl/name:version	

CloudFormation	
Overview	 • Infrastructure	as	code	

• Template	supports	YAML	and	JSON	
• Can	use	to	create/rollback/delete	entire	stack	
• Store	template	in	S3	

Stack	 • Resources	created	
Template	 • Resources	section	mandatory	

• Optional	sections:	AWSTemplateFormatVersion	
(must	be	2010-09-09),	Description,	Metadata,	
Parameters	(input	when	run.	For	Prod	or	Test),	
Conditions	(based	on	env),	Mappings	(by	
region),	Transform	(include	external	code	from	
s3),	Outputs	(to	browser	of	another	template)	

SAM	 • Serverless	application	model	
• CloudFormation	extension	
• Simplified	syntax	for	APIs/Lambdas/Dynamo	

• SAM	CLI	
• Package	-	converts	similified	yaml	to	cloud	

formation	yaml	and	uploads	to	s3	
• Deploy	–	deploys	app	using	sam	yaml	

Nested	stacks	 • Code	reuse	
• Standard	template	for	component	
• Include	under	resources	as	

AWS::CloudFormation::Stack	and	include	
template	url	on	s3	

Elastic	Beanstalk	
Overview	 • Upload	code	and	automatically	provision	

infrastructure	
• Control	AWS	resources	created	
• Pay	for	EC2	and	S3	created/used	
• Automatically	scales	
• Integrated	with	CloudWatch	and	Xray	

Configuring	in	zip/war	 • YAML	or	JSON	format	
• In	folder	.ebextensions	file	*.config	

Integrating	with	RDS	 • Launch	from	Elastic	Beanstalk	console.	Within	
Elastic	Beanstalk	environment	so	deleted	when	
delete	app	

• For	Prod,	create	standalone	RDS.	Create	extra	
security	group	in	autoscaling	group.	Add	
connection	information	to	RDS.	

Security	 • Can	set	roles	on	service	on	instance	
Supports	 • Tomcat,	Passenger,	Docker	

Deployment	strategies	
All	at	once/in	place	 • Outage	while	update	all	

If	update	fails,	redeploy	old	version	
• Don’t	use	in	Prod.	
• Elastic	Beanstalk:	All	at	once	
• CodeDeploy:	In	Place	deployment	-	All	at	Once		

Rolling	 • Deploys	in	batches.		
• Less	live	instances	while	batches	down	for	

update.	Can	reduce	performance	
• Repeat	to	rollback	
• Elastic	Beanstalk:	Rolling,	Rolling	with	

Additional	Batch	(the	later	launches	a	new	batch	
so	live	instance	count	unchanged)	

• Code	Deploy:	In	Place	Deployment	–	One	at	a	
Time,	Half	at	a	Time	

Immutable/blue	green	 • Starts	new	servers	with	new	code	

• Maintains	full	capacity	
• Rollback	is	terminating	new	instances	
• Elastic	Beanstalk:	Immutable	
• Elastic	Beanstalk	&	Code	Deploy:	Blue/Green	
• Blue/Green	–	(blue	=	active;	green	=	new)	

Deploys	to	new	environment	Keeps	old	up	for	
rollback.	

• Immutable	–	new	autoscaling	group	–	New	
instances	are	provisioned	with	new	server	in	
new	environment	and	swap	DNS.		

CloudWatch	
Overview	 • Monitors	performance	and	other	stats	

• Can	install	agent	for	on-prem	data	
Host	level	metrics	 • CPU,	Network,	Disk,	Status	Check	of	EC2	instance	
Custom	metrics	 • RAM	Utilization	

• Get	data	at	minimum	once	a	minute	even	if	script	
runs	more	often	

Frequency	 • Default	–	5	minute	intervals	
• Detailed	–	1	minute	intervals	
• High	resolution	–	1	second	intervals	

Data	storage	 • Forever	unless	configure	otherwise.	
• Logs	not	deleted	when	EC2/ELB	terminated	

Alarm	 • Monitor	any	metric	for	sustained	state	changes	
• States:	OK,	ALARM,	INSUFFICIENT_DATA	
• Criteria:	period	of	time,	evaluation	period,	data	

points	to	alarm	
Not	done	by	CloudWatch	 • CloudTrail	does	API	calls	

• Config	does	state	change	

	

Other	
EC2	 • Elastic	cloud	

• Like	virtual	server	
Serverless	services	 • Lambda,	API	Gateway,	S3,	DynamoDB,	SNS,	SQS,	

Step	Functions,	Kinesis,	Athena	(queries),	
Tooling	

ECS	 • Elastic	Container	Service	–	manages	containers	
ECR	 • Elastic	Container	Registry	–	image	repo	
	

HTTP	Error	codes	 	
2xx	 • Success	

3xx	 • Redirection	
4xx	 • Client	error	

o 400	–	Bad	request	
o 401	–	Unauthorized	
o 403	–	Forbidden	
o 404	–	Not	found	
o 409	–	Conflict	
o 429	–	Too	many	requests/throttling	error	

5xx	 • Server	error	
o 500	–	Server	error	
o 502	–	Bad	gateway	
o 503	–	Service	unavailable	
o 504	–	Gateway	timeout/not	responding	

	

